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Abstract
In this paper we investigate integrable models from the perspective of
information theory, exhibiting various connections. We begin by showing
that compressible hydrodynamics for a one-dimensional isentropic fluid, with
an appropriately motivated information theoretic extension, is described by
a general nonlinear Schrödinger (NLS) equation. Depending on the choice
of the enthalpy function, one obtains the cubic NLS or other modified NLS
equations that have applications in various fields. Next, by considering the
integrable hierarchy associated with the NLS model, we propose higher order
information measures which include the Fisher measure as their first member.
The lowest members of the hierarchy are shown to be included in the expansion
of a regularized Kullback–Leibler measure while, on the other hand, a suitable
combination of the NLS hierarchy leads to a Wootters type measure related
to a NLS equation with a relativistic dispersion relation. Finally, through our
approach, we are led to construct integrable relativistic NLS equations.

PACS numbers: 47.10.−g, 05.45.Yv, 89.90.+n

1. Introduction

Integrable equations are fascinating not just because of their soliton solutions and the
connections they make among different areas of mathematics, but also because they do describe
real physical systems in some limit. An example is the cubic nonlinear Schrödinger equation,

iψt + ψxx + 2κ2|ψ |2ψ = 0 (1)

which is of relevance in quantum optics, condensed matter physics and other areas. The basic
equation (1) can be modified while still preserving integrability, for example by adding to the
right-hand side of (1) a term proportional to

Q = s
(
√

ρ)xx√
ρ

, (2)
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where ρ = |ψ |2. Through a change of variables one can actually absorb that extra term and
regain the form (1) at the expense of redefined parameters [1]. However this is possible only
if parameter s < 1, whereas if s > 1 one ends up with a reaction-diffusion equation [1].
Such Q augmented NLS equations have appeared in plasma physics [2], where they describe
transmission of uni-axial waves in a cold collisionless plasma subject to a transverse magnetic
field.

The reason for using the symbol Q is because such a term, often referred to as a ‘quantum
potential’, appeared first in alternate ways of writing the usual linear Schrödinger equation
of quantum mechanics [4–6]. Consider the one-dimensional time-dependent Schrödinger
equation (we set the mass m = 1),

ih̄ψt +
h̄2

2
ψxx − U(x)ψ = 0. (3)

Then substituting into this equation the Madelung representation of the wavefunction

ψ = √
ρe

i
h̄
S (4)

decomposes it into two real equations,

St +
1

2
(Sx)

2 + U − h̄2

2

(
√

ρ)xx√
ρ

= 0, (5)

ρt + (ρSx)x = 0. (6)

The first equation may be viewed as a generalization of the usual Hamilton–Jacobi equation
by the term with explicit h̄ dependence, the quantum potential, encoding the quantum aspects
of the theory. The second equation is the continuity equation expressing the conservation of
probability.

Several attempts have been made to motivate the form of Q and thus obtain a derivation of
Schrödinger’s equation from classical dynamics [7]. Here we adopt an information theoretic
perspective similar to that used in statistical mechanics and which is usually referred to as the
‘maximum entropy method’ [8]. The idea is that if one has a system that has to be described
probabilistically then, lacking any information of the detailed microscopic dynamics, one
should choose the probability distribution with minimum bias. This is achieved by maximizing
an appropriate measure of uncertainty (entropy), such as the Gibbs–Shannon measure used in
classical statistical mechanics.

In order to proceed with an information theoretic interpretation of (5) and (6), it is useful
to approach those equations through a variational principle [9]: one minimizes the action

� =
∫

ρ

[
St +

1

2
(Sx)

2 + U

]
dx dt +

h̄2

8
IF (7)

with respect to the field variables ρ and S. The positive quantity

IF ≡
∫

dx dtρ

(
ρx

ρ

)2

(8)

resembles the ‘Fisher information’ measure used in statistics [10, 11]. Since a broader
probability distribution ρ(x) represents a greater uncertainty in x, IF may be thought of as an
inverse uncertainty measure.

Equations (7) and (8) were used in [9] to interpret Schrödinger’s equation as follows:
first one notes that without the term IF , varying equation (7) gives rise to the Hamilton–
Jacobi equation describing a classical ensemble. The probability, ρ(x) appears in this context
because one supposes that there is uncertainty in our knowledge of the initial position of the

2
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particle. One then adopts the principle of maximum uncertainty [8] to constrain the probability
distribution ρ(x) characterizing the ensemble: we would like to be as unbiased as possible in
its choice, consistent with our lack of information. That constraint is implemented in (7) by
minimizing IF when varying the classical action: h̄2/8 is the Lagrange multiplier.

It remains to explain why IF is chosen as the information measure in the above quantum
mechanical context as opposed to say the Gibbs–Shannon measure. In information theory
and statistical mechanics the Gibbs–Shannon measure is the simplest possibility that satisfies
certain axioms that are deemed necessary in those contexts [8]. Similarly one can derive the
Fisher measure as the relevant quantity that satisfies axioms relevant for classical ensemble
dynamics and hence appropriate for use in deriving Schrödinger’s equation [12].

In this paper we would like to apply the above information theoretic reasoning to motivate
the NLS (1) and its various extensions. In the next section we first review the derivation
of the action for a classical compressible fluid in one dimension. Then in section 3 we use
information theoretic arguments to modify the action and so arrive at a general nonlinear
Schrödinger equation. In section 4 we employ an expansion of the enthalpy function to obtain
specific examples of the nonlinear Schrödinger equation. In section 5 we consider the hierarchy
associated with the NLS equation and use that to define a hierarchy of higher derivative
information measures, relating the information hierarchy to other information measures in the
literature. In section 6 we use the information measures to construct NLS equations with
relativistic dispersion relations. Our conclusion is in section 7 while in the appendices we
discuss some details of the integrability of the NLS hierarchy; while much of that material is
known, we present some novel representations (such as using operator q-numbers and operator
q-derivatives) and then apply the general procedures to construct the new relativistic integrable
equations, associated with higher derivative information measures, in section 6.

2. Compressible fluid in one dimension

In this paper we focus on a specific physical model, hydrodynamics, to illustrate our approach,
though we believe that much of it can be generalized to other contexts.

The Euler and continuity equations for a one-dimensional compressible fluid are

vt + vvx +
1

ρ
Px = 0, (9)

ρt + (ρv)x = 0, (10)

where the hydrodynamical variables corresponding to the density of fluid, velocity of fluid
and pressure have been denoted by ρ(x, t), v(x, t) and P(x, t), respectively. In addition, one
has the thermodynamic equation [13]

d§

dt
= ∂§

∂t
+ v§x = 0 (11)

expressing the conservation of entropy, §, if one assumes the absence of the heat exchange
between parts of the medium. To complete the description of the dynamics one also needs an
equation of state

P = P(§, ρ) (12)

whose concrete form depends on the properties of the fluid. For example, an ideal gas has

P = e§/cV ργ , (13)

where γ = cP /cV (the Poisson adiabate) is the ratio of specific heat capacities at constant
pressure and volume, respectively. We will consider an isentropic fluid which has a spacetime
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constant § so that (11) is automatically satisfied. For such barotropic processes the pressure
becomes a function of density only,

P = P(ρ). (14)

It is convenient to introduce the enthalpy function defined through the relation

∂

∂x
E(ρ) = 1

ρ

∂

∂x
P (ρ) (15)

which implies, for ρx �= 0,

E ′(ρ) = 1

ρ
P ′(ρ) (16)

or

E(ρ) =
∫ ρ

ρ0

dP

ρ
. (17)

Then the system of equations (9) and (10) becomes

vt + vvx + (E(ρ))x = 0, (18)

ρt + (ρv)x = 0. (19)

This system may be written in the Lagrangian form by first introducing the velocity potential

v(x, t) = Sx(x, t) (20)

and then integrating the first equation once and introducing the enthalpy potential

E(ρ) = dV (ρ)

dρ
(21)

to obtain

St +
(Sx)

2

2
+

dV (ρ)

dρ
= 0, (22)

ρt + (ρSx)x = 0. (23)

The action for this system is

A =
∫ (

ρSt +
ρ(Sx)

2

2
+ V (ρ)

)
dx dt (24)

and equations (22) and (23) appear by varying this functional with respect to ρ and S. The
resemblance of (24) to the classical part of (7) will be the starting point for the extension in
the next section.

We note, for later use below, that when the enthalpy vanishes, E = 0, the fluid
equations (22) and (23) are invariant under a scaling, ρ → αρ. That is, with E = 0, the
magnitude of the density does not matter, only its variation. When E is not zero, the equations
to be derived later become generalized nonlinear Schrödinger equations, with a sensitivity to
the magnitude of ρ.
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3. Information-theoretical extension of compressible fluid dynamics

The action (24) gives the classical equations of motion for the fluid. Since the density ρ

informs us about the likelihood of finding the microscopic fluid elements at a certain region
of spacetime, it plays a role analogous to the probability density in quantum mechanics. Thus
from the density we may form an information measure I that quantifies our knowledge of the
microstates and we may demand, as in the previous section, that the equations of motion follow
from (24) but constrained such that our uncertainty (information) is maximized (minimized).
This will lead to modified hydrodynamics equations that depend on the form of information
measure chosen in the procedure. Now, the density ρ(x) is positive definite and if it is uniform
it tells us that the underlying particles of the fluid could be anywhere: we have no information
(maximum uncertainty). If the density is peaked somewhere, we know that a fluid particle is
more likely to be there, that is we have gained information. Thus we require that our scalar
information functional I [ρ] have the property that it is positive definite and I → 0 as ρ → a
constant.

We prefer local equations, and so we may write I as an integral over a density function
J (ρ),

I =
∫

dx dtρJ (ρ). (25)

Next we assume the density to be slowly varying and so do a derivative expansion,

J (ρ) = J0(ρ) + ρ ′J1(ρ) + ρ ′′J21(ρ) + (ρ ′)2J22(ρ) + higher derivative terms, (26)

where J0(ρ), J1(ρ), . . . do not contain any derivatives. We assume that when (26) is used in
(25) the integrals are convergent term by term.

We also impose the strong condition that the information measure, I, does not break the
invariance of the E = 0 equations of motion (22) and (23) under the scaling of ρ → αρ. That
is, although E will generally break that invariance, we demand that the terms in the modified
equations of motion that come from I do not do so: the information measure is chosen to be
neutral to the magnitude of ρ but measures only local variations. So here we see the first
difference between the contributions of our I and E : I is insensitive to the size of ρ.

In order to achieve our goal, we need to demand that J (ρ) in (25) is scale invariant (note
we already factored out a ρ in the integral form of I). In that way the equation of motion terms
that come from varying I will be scale invariant. This is satisfied if (26) has the form

J (ρ) = a0 + a1 × (ρ ′/ρ) + a21 × (ρ ′′/ρ) + a22 × (ρ ′/ρ)2 + higher derivative terms, (27)

where ak, akl, . . . for k, l = 1, 2, . . . , are constants. Using this in the integral that defines
I, equation (25), and dropping constants and total derivatives, only the a22 term survives to
leading order and it gives precisely the Fisher information measure!

Recall that we still need to demand positivity of our information measure: that fixes
the Lagrange multiplier to be positive if we are minimizing the information. Fortunately, the
Fisher measure already satisfies the other required property, that it vanishes as ρ → a constant.

Note that in the fluid problem we have in general the boundary condition ρ → ρ0 as
|x| → ∞, so that for normalization of the probability we have∫

(ρ(x, t) − ρ0) dx = 1. (28)

With the choice of the Fisher information measure

IF =
∫

(ρx)
2

ρ
dx = 4

∫
(
√

ρ)x(
√

ρ)x dx (29)
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as motivated above, the extension of the normalization condition (28) from the usual case
in quantum mechanics does not modify the convergence properties of I. Thus we have the
variational functional

A +
λ2

8
IF , (30)

where λ is a Lagrange multiplier and the equations of motion that follow are

St +
(Sx)

2

2
+

dV (ρ)

dρ
− λ2

2

(
√

ρ)xx√
ρ

= 0, (31)

ρt + (ρSx)x = 0. (32)

These equations may be combined into one complex equation through the inverse Madelung
transformation to give the following general nonlinear Schrödinger equation,

iλψt +
λ2

2
ψxx − E(|ψ |2)ψ = 0. (33)

In summary, although both the enthalpy function, E , and the information functional, I,
will contribute ρ-dependent terms to the equations of motion, their structure and origin is in
general different. Using the lowest order information measure with the properties described
above we get a generalized NLS equation (33) that depends on the form of E . Using more
generalized information measures will give further extensions of the NLS equations.

We remark also that unlike the quantum mechanics case [12], the deduction of the Fisher
measure above did not use the separability condition: rather here we assumed a convergent
derivative expansion of the information density. See also [14] for similar arguments used in
the relativistic case.

4. Weak nonlinearity and nonlinear Schrödinger equation

In this section we study the simplest form of the function E in (33) that will give rise to
integrable systems. If E as a function of ρ = |ψ |2 is analytic then

E(|ψ |2) = E0 + E1|ψ |2 + E2|ψ |4 + · · · + En|ψ |2n + · · · . (34)

This equation implies that the pressure according to (15) is also an analytic function of the
form

P(ρ) = E0 +
1

2
E1ρ

2 +
2

3
E2ρ

3 + · · · n

n + 1
Enρ

n+1 + · · · . (35)

At the lowest order of nonlinearity we get the nonlinear Schrödinger equation (NLS) with
cubic nonlinearity

iλψt +
λ2

2
ψxx − (E0 + E1|ψ |2)ψ = 0. (36)

This model is integrable for both signs of E1. For E1 > 0 it is defocusing (e.g. repulsive Bose
gas) and nontrivial soliton solutions exist only with nontrivial boundary conditions, so in this
case E0 �= 0. For E1 < 0 we have the focusing case (e.g. attractive Bose gas) for which soliton
solutions exist for vanishing boundary conditions; so in this case we can put E0 = 0. Both
cases have applications in nonlinear optics describing pulse propagating in nonlinear media.
Consider the second case again: by rescaling space and time variables t ′ = t/λ, x ′ = √

2x/λ

and the coupling constant E1 = −2κ2 we may rewrite it in the form (we now skip all upper
scripts)

iψt + ψxx + 2κ2|ψ |2ψ = 0. (37)

6



J. Phys. A: Math. Theor. 41 (2008) 235207 R R Parwani and O K Pashaev

As is well known [26], integrability of NLS (37) is connected with existence of the flat
non-Abelian connections

J1 =
(− i

2p −κ2ψ̄

ψ i
2p

)
, J0 =

(− i
2p2 + iκ2|ψ |2 −κ2(pψ̄ − iψ̄x)

pψ + iψx
i
2p2 − iκ2|ψ |2

)
, (38)

where constant p is the spectral parameter, so that the zero curvature condition

∂tJ1 − ∂xJ0 + [J0, J1] = 0 (39)

is equivalent to (37). It implies the linear system

∂

∂x

(
v1

v2

)
=

(− i
2p −κ2ψ̄

ψ i
2p

)(
v1

v2

)
= J1

(
v1

v2

)
, (40)

∂

∂t

(
v1

v2

)
=

(− i
2p2 + iκ2|ψ |2 −κ2(pψ̄ − iψ̄x)

pψ + iψx
i
2p2 − iκ2|ψ |2

) (
v1

v2

)
= J0

(
v1

v2

)
. (41)

The linear problem (40) and (41) is called the Zakharov–Shabat problem and it can be solved
by the inverse scattering method [26].

The ‘semiclassical’ or dispersionless limit of equation (37) was studied in [15] in relation
to shock wave propagation in nonlinear optics. The wave form of this semiclassical limit is a
NLS equation perturbed by a quantum potential [16]

iψt + ψxx + 2κ2|ψ |2ψ = |ψ |xx

|ψ | ψ. (42)

Then we can conclude that inclusion of information characteristics in the form of the Fisher
measure, produces NLS (37) from dispersionless NLS (42) and corresponding solitons of the
first one from the shock waves of the second one [16].

5. Integrable NLS hierarchy and higher derivative information measures

It is well known that one can construct a hierarchy of higher order differential equations that
are related to the cubic NLS (37) and its complex conjugate, which are still integrable [17],

iσ3

(
ψ

ψ̄

)
tN

= RN

(
ψ

ψ̄

)
(43)

where tN ,N = 1, 2, 3, . . . , is an infinite time hierarchy andR is the matrix integro-differential
operator—the recursion operator of the NLS hierarchy—

R = iσ3

(
∂x + 2κ2ψ

∫ x
ψ̄ −2κ2ψ

∫ x
ψ

−2κ2ψ̄
∫ x

ψ̄ ∂x + 2κ2ψ̄
∫ x

ψ

)
(44)

and σ3 is the Pauli matrix; see the appendix for more details.
The first few members of the hierarchy N = 1, 2, 3, 4, are

ψt1 = ψx, (45)

iψt2 + ψxx + 2κ2|ψ |2ψ = 0, (46)

ψt3 + ψxxx + 6κ2|ψ |2ψx = 0, (47)

iψt4 = ψxxxx + 2κ2(2|ψx |2ψ + 4|ψ |2ψxx + ψ̄xxψ
2 + 3ψ̄ψ2

x

)
+ 6κ4|ψ |4ψ. (48)

In the linear approximation, when κ = 0, the recursion operator is just the momentum operator

R0 = iσ3
∂

∂x
(49)

7



J. Phys. A: Math. Theor. 41 (2008) 235207 R R Parwani and O K Pashaev

and the NLS hierarchy (43) becomes the linear Schrödinger hierarchy

iψtn = in∂n
x ψ. (50)

Written in the Madelung representation it produces the complex Burgers hierarchy so that this
representation plays the role of the complex Cole–Hopf transformation [18].

5.1. Fourth order flow

Let us look more explicitly at the fourth order flow for which the Hamiltonian is

H =
∫ [

ψ̄xxψxx − 8κ2ψ̄xψxψ̄ψ − κ2
(
ψ̄2

xψ
2 + ψ̄2ψ2

x

)
+ 2κ4|ψ |6] dx. (51)

In the Madelung representation

ψ = √
ρ eiS = eR+iS, (52)

this becomes

H =
∫ [

ρ2
xx

4ρ
− ρxxρ

2
x

4ρ2
+

ρ4
x

16ρ3
(53)

+ ρS2
xx + ρS4

x + 2ρxSxSxx − 2κ2

(
5

4
ρ2

x + 3ρ2S2
x

)
+ 2κ4ρ3

]
dx. (54)

In fact for configurations with S = const we have only contributions from the first three terms
which can be combined into

H =
∫

(
√

ρ)xx(
√

ρ)xx dx. (55)

This may be considered as a higher order analogue of the Fisher information measure IF (29).

5.2. Hierarchy of information measures

Generalizing, the above linearized Schrödinger hierarchy suggests, after the substitution
S = const, the even order information measure hierarchy

I2 =
∫

(
√

ρ)x(
√

ρ)x dx, (56)

I4 =
∫

(
√

ρ)xx(
√

ρ)xx dx, (57)

and in general,

I2n =
∫

(
√

ρ)x...x(
√

ρ)x...x dx. (58)

Here all odd members vanish because their integrands are total derivatives.
We will use the above information hierarchy in section 6 to construct relativistic NLS

equations and exhibit links between different information measures known in the literature.

8
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5.3. Soliton information measures

As an illustration, we compute the above information measures for the one soliton solution of
the NLS equation. The measure is

ρν(x) = ν

2 cosh2 νx
(59)

which satisfies ∫ ∞

−∞
ρν(x) dx = 1 (60)

and is characterized by a real parameter ν so that

lim
ν→∞ ρν(x) = δ(x). (61)

Then information measures (55), (56), . . . for this distribution apart from numerical constants
are simply

I2 = ν2, I4 = ν4, . . . , I2ν = ν2n, . . . . (62)

5.4. Relation to Kullback–Liebler measure

The Gibbs–Shannon entropy

IGS = −
∫

ρ(x) ln ρ(x) dx (63)

may be generalized to the Kullback–Leibler information [11]

IKL(p, r) = −
∫

ρ(x) ln
ρ(x)

r(x)
dx, (64)

where r(x) is a reference probability distribution. If one chooses the reference distribution to
be the same as ρ(x) but with infinitesimally shifted arguments, that is r(x) = ρ(x + �x), then
to lowest order,

IKL(ρ(x), ρ(x + �(x)) = −(�x)2

2
IF (ρ(x)) + O(�x)3, (65)

that is, the Fisher measure is recovered as the lowest order term in the expansion.
One may further generalize the Kullback–Liebler information by introducing a parameter

0 < η < 1, as used for example in [19],

M ≡
∫

ρ(x) ln
ρ(x)

(1 − η)ρ(x) + ηρ(x + ηL)
dx. (66)

This form is nonsingular even if the density vanishes at any point. For L � 1 we have the
expansion

M = L2 η4

2

∫
ρ2

x

ρ
dx − L3

(
η6

3
− η5

4

) ∫
ρ3

x

ρ2
dx

−L4

[
η6

24

∫
ρ2

xx

ρ
dx +

(
η7

3
− η6

9
− η8

4

) ∫
ρ4

x

ρ3
dx

]
+ O(L5)

9
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where a number of surface terms have been dropped after integration by parts. Let us look at
the symmetrized measure

M(+L) + M(−L) = L2η4
∫

ρ2
x

ρ
dx

−L4

[
η6

12

∫
ρ2

xx

ρ
dx + 2

(
η7

3
− η6

9
− η8

4

) ∫
ρ4

x

ρ3
dx

]
+ O(L6),

where as before, the lowest order term, proportional to L2, is the Fisher measure. By choosing
the parameter η to satisfy

η2 − 4

3
η +

3

8
= 0, (67)

or η = (2 ± √
5/8)/3 we can rewrite the next, O(L4) term, as the higher derivative

information measure given by equation (54).
Thus the first two members of the information hierachy I2n we proposed in section 5 are

contained in the Kullback–Leibler information.

6. Relativistic NLS equations

Now let us consider other ways of combining and using the higher derivative information
measures. Take a Hamiltonian of the form

H = c2I2 + c4I4 + · · · + c2nI2n + · · · (68)

where the constant coefficients ci depend on the context.

6.1. Semi-relativistic NLS

For example, for low momenta one may as usual expand the relativistic dispersion relation
E =

√
m2c4 + p2c2 to obtain

E = mc2 +
p2

2m
− p4

8m3c2
+ · · · . (69)

This may be used to construct a ‘semi-relativistic’ Schrödinger equation as a formal power
series

ih̄
∂

∂t
ψ = mc2

(
1 − h̄2

2m2c2

∂2

∂x2
− h̄4

8m4c4

∂4

∂x4
+ · · ·

)
ψ (70)

≡ ĥψ (71)

where apart from a constant, the average of ĥ for real ψ is precisely (68) for a particular choice
of coefficients. Combining two complex conjugate equations together we have

iσ3

(
ψ

ψ̄

)
t

= mc2

√
1 +

1

m2c2

(
iσ3

∂

∂x

)2 (
ψ

ψ̄

)
. (72)

In fact, following the general procedure described in appendix A.4.2 one may proceed
further: by replacing the derivative operator R0 = iσ3

∂
∂x

or momenta with the full recursion
operator R (44), one obtains an integrable relativistic nonlinear Schrödinger equation

iσ3

(
ψ

ψ̄

)
t

= mc2

√
1 +

1

m2c2
R2

(
ψ

ψ̄

)
, (73)

where the square root operator has meaning of the formal power series so that

iσ3

(
ψ

ψ̄

)
t

= mc2

(
1 +

1

2m2c2
R2 − 1

8m4c4
R4 +

1

16m6c6
R6 ± · · ·

)(
ψ

ψ̄

)
. (74)

10
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6.1.1. The linear problem. Applying the general result of appendix A.4.3 to the above
relativistic dispersion, we have the next linear problem for equation (73)

∂

∂x

(
v1

v2

)
=

(− i
2p −κ2ψ̄

ψ i
2p

) (
v1

v2

)
, (75)

∂

∂t

(
v1

v2

)
=

(
iA −κ2C̄

C −iA

) (
v1

v2

)
, (76)

where(
C

C̄

)
=

√
m2c4 + R2c2 −

√
m2c4 + p2c2

R − p

(
ψ

ψ̄

)
(77)

A = −1

2

√
m2c4 + p2c2 − iκ2

(∫ x

ψ̄,−
∫ x

ψ

) √
m2c4 + R2c2 −

√
m2c4 + p2c2

R − p

(
ψ

ψ̄

)
(78)

and the spectral parameter p has meaning of the classical momentum.
We note that relativistic versions of the Schrödinger equation have been considered in

different contexts, for example to study relativistic quarks in nuclei [20] and gravitational
collapse of a boson star [21]. A nonlinear version has appeared as the semi-relativistic
Hartree–Fock equation [22]. But none of those models is known to be integrable. By
contrast the model (73), where the square root is considered as a formal power series (matrix
pseudo-differential operator), is an integrable nonlinear Schrödinger equation with relativistic
dispersion:

iψt = mc2

√
1 − 1

m2c2

∂2

∂x2
ψ + F(ψ), (79)

where the nonlinearity expanded in 1/c2 is the infinite sum

F(ψ) = 1

2m
[−2κ2|ψ |2ψ]

− 1

8m3c2

[
2κ2

(
2|ψx |2ψ + 4|ψ |2ψxx + ψ̄xxψ

2 + 3ψ̄ψ2
x

)
+ 6κ4|ψ |4ψ]

+ O

(
1

c4

)
. (80)

What is amazing is that if we expand also the dispersion part in 1/c2, then at every order
of 1/c2 we get an integrable system. It means that we have integrable relativistic corrections
to the NLS equation at any order. And the Fisher information has appeared here as the
nonrelativistic approximation of the relativistic information measure hierarchy.

6.2. Relativistic quantum mechanics and Wootters measure

Another way of constructing a relativistic model that includes higher derivative information
measures is to use rapidity variables for the relativistic dispersion relation,

E = mc2 cosh χ, p = mc sinh χ. (81)

This gives the relativistic model with Hamiltonian [23]

H = mc2
∫

ψ̄ cosh

(
iλ

∂

∂x

)
ψdx, (82)

11
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where λ = h̄/(mc) is the Compton wave length of the relativistic particle. Expanding in
powers of λ,

cosh

(
iλ

∂

∂x

)
= 1 +

1

2!

(
iλ

∂

∂x

)2

+
1

4!

(
iλ

∂

∂x

)4

+ · · · (83)

we again have a member of the information hierarchy (68). The Fisher measure then
corresponds to the nonrelativistic approximation of order O(λ2). The relativistic quantum
mechanics in one space dimension then is described by the Schrödinger equation, which we
rewrite for couple of complex conjugate equations as

iσ3

(
ψ

ψ̄

)
t

= mc2 cosh

(
iλσ3

∂

∂x

) (
ψ

ψ̄

)
. (84)

Following integrable nonlinearization procedure described in appendix A.4.2 we have
nonlinear relativistic quantum mechanical (NRQM) wave equation

iσ3

(
ψ

ψ̄

)
t

= mc2 cosh (λR)

(
ψ

ψ̄

)
. (85)

6.2.1. Linear problem for NRQM. The linear problem for this equation is given by the
Zakharov–Shabat problem (75) for the space part, and (76) for the time part, where coefficient
functions are (

C

C̄

)
= mc2 cosh(λR) − cosh(λp)

R − p

(
ψ

ψ̄

)
(86)

and

A = −1

2
mc2 cosh(λp) − iκ2mc2

(∫ x

ψ̄,−
∫ x

ψ

)
cosh(λR) − cosh(λp)

R − p

(
ψ

ψ̄

)
. (87)

6.2.2. Wootters measure. Finally we note that the above free Hamiltonian may be represented
as a finite difference operator

H = mc2

2

∫
ψ̄

(
eL ∂

∂x + e−L ∂
∂x

)
ψ dx = mc2

2

∫
(ψ̄(x)ψ(x + L) + ψ̄(x)ψ(x − L)) dx. (88)

The dispersive part of this hierarchy for S = const gives a Wootters type [24] measure

IW =
∫

(
√

ρ(x)
√

ρ(x + L) +
√

ρ(x)
√

ρ(x − L)) dx. (89)

7. Summary

We have shown how information theory arguments can be used to motivate the general
nonlinear Schrödinger equation in the context of hydrodynamics. This then led us to study
different information measures.

We noted that the integrable hierarchy of linear and nonlinear Schrödinger equations,
in their Madelung form, naturally suggest a hierarchy of information measures of which the
Fisher measure represents the first member. The lowest members of the information hierarchy
were shown to be included in the expansion of a regularized Kullback–Leibler measure.

We also showed how to construct integrable semi-relativistic nonlinear Schrödinger
equations using various combinations of the information measures. These classes of equations,
which are distinct from those obtained in [14] and references therein, might be useful in
analyzing relativistic corrections to solitons, Bose–Einstein condensates or other condensed
matter systems with effective equations of relativistic form.

12
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Appendix

A.1. NLS hierarchy

Consider the Zakharov–Shabat linear problem (40)

∂

∂x

(
v1

v2

)
=

(− i
2p −κ2ψ̄

ψ i
2p

) (
v1

v2

)
= J1

(
v1

v2

)
, (A.1)

for the space evolution, and the generalized problem

∂

∂t

(
v1

v2

)
=

(
iA −κ2C̄

C −iA

) (
v1

v2

)
= J0

(
v1

v2

)
, (A.2)

for the time evolution, where the real A(x, t, p) and complex C(x, t, p) functions are
determined by the zero-curvature condition (39) and subject to

∂tψ = ∂xC + 2iAψ + ipC (A.3)

∂t ψ̄ = ∂xC̄ − 2iAψ − ipC̄ (A.4)

∂xA = iκ2(C̄ψ − Cψ̄). (A.5)

Substitution [17]:

AN =
N∑

n=0

A(n)
(
−p

2

)n

, CN =
N∑

n=0

C(n)
(
−p

2

)n

(A.6)

to (A.3) gives the evolution equation

∂tN ψ = ∂xC
(0) + 2iA(0)ψ (A.7)

and C(N) = 0, A(N) = aN = const. In our further consideration we fix this constant so that
aN = (−2)N−1. Then we have the recurrence relations

C(n) = 1

2i
∂xC

(n+1) + A(n+1)ψ (A.8)

∂xA
(n) = iκ2(C̄(n)ψ − C(n)ψ̄), (A.9)

where n = 0, 1, 2, . . . , N − 1. Integrating the last equation one has

A(n) = −iκ2
∫ x

(ψ̄C(n) − ψC̄(n)). (A.10)

A.2. Recursion operator

Substituting (A.10) into (A.8) and into its complex conjugate, we find the recursion formula(
C(n)

C̄(n)

)
= −1

2
R

(
C(n+1)

C̄(n+1)

)
(A.11)

13
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which starts from(
C(N−1)

C̄(N−1)

)
= aN

(
ψ

ψ̄

)
, (A.12)

where R is the matrix integro-differential operator—the recursion operator of the NLS
hierarchy—

R = iσ3

(
∂x + 2κ2ψ

∫ x
ψ̄ −2κ2ψ

∫ x
ψ

−2κ2ψ̄
∫ x

ψ̄ ∂x + 2κ2ψ̄
∫ x

ψ

)
(A.13)

and σ3—the Pauli matrix. Repeating k-times it gives(
C(N−k)

C̄(N−k)

)
= aN

(−2)k−1
Rk−1

(
ψ

ψ̄

)
. (A.14)

For k = N steps we obtain(
C(0)

C̄(0)

)
= aN

(−2)N−1
RN−1

(
ψ

ψ̄

)
. (A.15)

Using (A.9) for n = 0, the evolution equation (A.7) can be rewritten by the recursion operator
(44) as

iσ3

(
ψ

ψ̄

)
tN

= R
(

C(0)

C̄(0)

)
. (A.16)

Hence substituting (A.15) and fixing aN = (−2)N−1 we obtain equation (43)

iσ3

(
ψ

ψ̄

)
tN

= RN

(
ψ

ψ̄

)
, (A.17)

where tN ,N = 1, 2, 3, . . . , is an infinite time hierarchy.

A.3. Linear problem for the NLS hierarchy

Every equation of the hierarchy (A.17) is integrable. The linear problem for the Nth equation
is given by the Zakharov–Shabat problem (A.1) for the space part and

∂

∂tN

(
v1

v2

)
=

(
i AN −κ2C̄N

CN −iAN

) (
v1

v2

)
= J0N

(
v1

v2

)
, (A.18)

for the time part. Coefficient functions CN and AN can be found by substituting (A.14) into
(A.6) so that(

CN

C̄N

)
=

N∑
k=0

(
−p

2

)N−k
(

C(N−k)

C̄(N−k)

)
=

N∑
k=1

(
−p

2

)N−k
(

C(N−k)

C̄(N−k)

)
(A.19)

or(
CN

C̄N

)
=

N∑
k=1

pN−kRk−1

(
ψ

ψ̄

)
= (pN−1 + pN−2R + · · · + RN−1)

(
ψ

ψ̄

)
. (A.20)

To write this expression in a compact form, by analogy with q-calculus it is convenient to
introduce notation of the q-number operator

1 + q + q2 + · · · + qN−1 ≡ [N ]q, (A.21)

14
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where q is a linear operator. Hence with operator q ≡ R/p we have the finite Laurent form
in the spectral parameter p,

1 +
R
p

+

(
R
p

)2

+ · · · +

(
R
p

)N−1

≡ [N ]R/p. (A.22)

Then we have shortly(
CN

C̄N

)
= pN−1[N ]R/p

(
ψ

ψ̄

)
. (A.23)

In a similar way

AN = −pN

2
− iκ2

(∫ x

ψ̄,−
∫ x

ψ

) (
CN

C̄N

)
(A.24)

and using (A.23)

AN = −pN

2
− iκ2pN−1

(∫ x

ψ̄,−
∫ x

ψ

)
[N ]R/p

(
ψ

ψ̄

)
. (A.25)

Equations (A.18), (A.23) and (A.25) give the time part of the linear problem (the Lax
representation) for the Nth flow of NLS hierarchy (A.17).

A.4. General NLS hierarchy equation

For the time t determined by the formal series

∂t =
∞∑

N=0

EN∂tN , (A.26)

where EN are arbitrary constants, the general NLS hierarchy equation is [27]

iσ3

(
ψ

ψ̄

)
t

= (E0 + E1R + · · · + ENRN + · · ·)
(

ψ

ψ̄

)
. (A.27)

A.4.1. Linear problem. Integrability of this equation is associated with the Zakharov–Shabat
problem (A.1) and the time evolution

J0 =
∞∑

N=0

ENJ0N
=

(
iA −κ2C̄

C −iA

)
, (A.28)

where (
C

C̄

)
=

∞∑
N=0

EN

(
CN

C̄N

)
=

∞∑
N=1

ENpN−1[N ]R/p

(
ψ

ψ̄

)
. (A.29)

In the last equation we have used that for N = 0, C0 = 0. Then we have

A =
∞∑

N=0

ENAN = −1

2

∞∑
N=0

ENpN − iκ2

(∫ x

ψ̄,−
∫ x

ψ

)(
C

C̄

)
. (A.30)
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A.4.2. Integrable nonlinearization. The above equation (A.27) gives integrable nonlinear
extension of a linear Schrödinger equation with general analytic dispersion. Let one considers
the classical particle system with the energy–momentum relation

E = E(p) = E0 + E1p + E2p
2 + · · · . (A.31)

Then the corresponding time-dependent Schrödinger wave equation is

ih̄
∂

∂t
ψ = H

(
−ih̄

∂

∂x

)
ψ, (A.32)

where the Hamiltonian operator results from the standard substitution for momentum
p → −ih̄ ∂

∂x
in the dispersion (A.31). Equation (A.32) together with its complex conjugate

can be rewritten as

ih̄σ3
∂

∂t

(
ψ

ψ̄

)
= H

(
−ih̄σ3

∂

∂x

)(
ψ

ψ̄

)
. (A.33)

The momentum operator here is just the recursion operator (49) in the linear approximation
R0 = iσ3

∂
∂x

. Hence (A.33) can be rewritten as the linear Schrödinger equation with arbitrary
analytic dispersion

ih̄σ3
∂

∂t

(
ψ

ψ̄

)
= H(R0)

(
ψ

ψ̄

)
= (

E0 + E1R0 + E2R2
0 · · ·) (

ψ

ψ̄

)
. (A.34)

Then the nonlinear integrable extension of this equation appears as (A.27), which corresponds
to the replacement R0 → R, (h̄ = 1), so that

iσ3

(
ψ

ψ̄

)
t

= H(R)

(
ψ

ψ̄

)
. (A.35)

From this point of view the standard substitution for classical momentum p → −ih̄ ∂
∂x

or
equivalently p → −ih̄σ3

∂
∂x

= R0 for the equation in spinor form, gives quantization in
the form of the linear Schrödinger equation. While substitution p → R gives ‘nonlinear
quantization’ and the nonlinear Schrödinger hierarchy equation.

A.4.3. The Lax representation. The related Lax representation for equation (A.35) is given
by (A.29) and (A.30). Using the definition of the q-derivative

D(ζ)
q f (ζ ) = f (qζ ) − f (ζ )

(q − 1)ζ
(A.36)

for operator q = R/p we have the relation

D
(p)

R/ppN = [N ]R/ppN−1. (A.37)

Then equation (A.29) can be rewritten as

(
C

C̄

)
=

∞∑
N=1

ENpN−1[N ]R/p

(
ψ

ψ̄

)
=

∞∑
N=1

END
(p)

R/ppN

(
ψ

ψ̄

)
(A.38)

or using linearity of (A.36) and dispersion (A.31)(
C

C̄

)
= D

(p)

R/p

∞∑
N=0

ENpN

(
ψ

ψ̄

)
= D

(p)

R/pE(p)

(
ψ

ψ̄

)
. (A.39)
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Using definition (A.36) it gives simple formula(
C

C̄

)
= E(R) − E(p)

R − p

(
ψ

ψ̄

)
, (A.40)

where
E(R) − E(p)

R − p
= E1 + E2(R + p) + E3(R2 + Rp + p2) + · · · . (A.41)

Then for A we obtain

A = −1

2
E(p) − iκ2

(∫ x

ψ̄,−
∫ x

ψ

)
E(R) − E(p)

R − p

(
ψ

ψ̄

)
. (A.42)

Equations (A.40) and (A.42) give the Lax representation of the general integrable NLS
hierarchy model (A.35). It is worth noting here that special form of the dispersion E = E(p)

is fixed by physical problem. In section 6 we discuss the relativistic form of this dispersion
and corresponding semi-relativistic NLS equation.
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